4,5,6,7-TETRADEHYDRO-PGI₁, A STABLE AND POTENT INHIBITOR OF BLOOD PLATELET AGGREGATION¹⁾

Kiyotaka Ohno * and Hisao Nishiyama Basic Research Laboratories, Toray Industries Inc., Tebiro, Kamakura 248, Japan

ABSTRACT The titled compound, which is a stable and potent analog of PGI₂, was synthesized from easily available enone 3 in two steps.

Since the discovery of prostacyclin (PGI_2 , 1) by Vane and his associates 2 , increasing numbers of analogs have been reported 3). PGI_2 has potent biological activities including inhibition of blood platelet aggregation 2)4), de-aggregation of platelet thrombi⁵), vasodilation²) and inhibition of gastric acid secretion⁶), but is unstable even under the neutral condition because of the presence of enol ether linkage 7). To date several stable analogs of PGI_2 with similar activity have been reported in search of therapeutically useful biomimic of PGI_2 . Among these are Δ^6 -prostacyclin⁸), 6,9-thiaprostacyclin⁹), 6,9-methano-prostacyclin¹⁰, 6,9-azaprostacyclin¹¹) and 6,9-pyridazaprostacyclin¹²). We wish to report a stable analog of PGI_2 , 4,5,6,7-tetradehydro- PGI_1 which is a potent inhibitor of blood platelet aggregation.

Easily available 4,5-didehydro-11(0),15(0)-diacetyl-6-oxo-PGF₁₀methyl ester $\frac{3}{3}$ in dimethoxyethane was treated with anhydrous p-toluenesulfonic acid at ambient temperature for 10 minutes to afford 4,5,6,7-tetradehydro-11(0),15(0)-diacetyl-PGI₁ methyl ester $\frac{4}{3}$ (88%). The structure of diene $\frac{4}{3}$ was established on the basis of IR (v cm⁻¹, 1740, 1680, 1600), NMR (δ ppm, CDCl₃, 0.9(m,3H), 1.2~1.8(m,10H), 1.97(s,3H), 2.05(s, 3H), 2.3~2.7(m,5H), 3.14 (m,1H), 3.68(s,3H),4.8~5.3(m,4H), 5.50(m,2H), 5.59(s,3H)) and mass spectrum (m/e, 448(M⁺), 388(M⁺-60), 328(M⁺-120)). Methanolysis of diene $\frac{4}{3}$ with sodium methoxide in anhydrous methanol at ambient temperature for one day gave the corresponding diene $\frac{5}{3}$ (68.8%) after purification by silica gel column chromatography (ethyl acetate:water:triethyl amine = 97:2:1 as eluent) $\frac{13}{3}$.

Diene $\underline{4}$ was hydrolyzed with aqueous sodium hydroxide in methanol. The mixture was acidified with hydrochloric acid and extracted with ethyl acetate to afford free carboxylic acid $\underline{2}$ (86.5%)¹⁴⁾.

4,5,6,7-Tetradehydro-PGI $_1$ $\stackrel{?}{=}$ is more stable than PGI $_2$, owing to the conjugation of enol ether linkage, and showed nearly the same potency as PGE $_1$ in the inhibition of rabbit platelet aggregation induced by arachidonic acid¹⁵).

COOH

COOH

HO

OH

COOCH3

ACO

OAC

$$\frac{1}{2}$$

HO

OH

COOCH3

 $\frac{4}{2}$
 $R_1 = CH_3, R_2 = Ac$
 $\frac{5}{2}$
 $R_1 = CH_3, R_2 = H$

REFERENCES AND NOTES

- Synthesis of prostaglandins and their congeners. Part VI. for Part V see Hisao Nishiyama and Kiyotaka Ohno, Chemistry Letters , in press.
- S.Moncada, R.J.Gryglewski, S.Bunting and J.R.Vane, Nature, 263,663(1976).
- 3) K.C.Nicolaou, G.P.Gasic, W.E.Barnette, Angew.Chem.Int.Ed.Engl.,17,293(1978).
- 4) R.J.Gryglewski, S.Bunting, S.Moncada, R.J.Flower and J.R.Vane, Prostaglandins, 12,685 (1976).
- a) R.J.Gryglewski, R.Korbut and A.Ocetkiewicz, Prostaglandins, 15,637(1978).
 b) S.Moncada, R.J.Gryglewski, S.Bunting and J.R.Vane, Prostaglandins, 12,715(1976).
- 6) B.J.R.Whittle, N.K.Boughton-Smith, S.Moncada and J.R.Vane, Prostaglandins, 15, 955 (1978).
- 7) M.J.Cho and M.A.Allen, Prostaglandins, 15,943(1978).
- 8) K.Shimoji, Y.Konishi, Y.Arai, M.Hayashi, and H.Yamamoto, J.Am. Chem. Soc., 100, 2547 (1978).
- 9) a) K.C.Nicolaou, M.E.Barnette, G.P.Gasic, and R.L.Magolda, J.Am.Chem.Soc., 99,7736(1977).
 - b) M.Shibasaki and S.Ikegami, Tetrahedron Letters, 559(1978).
- 10) a) K.Kojima and K.Sakai, Tetrahedron Letters, 3743(1978). b) M.Shibasaki, J.Ueda, and S.Ikegami, Tetrahedron Letters, 433(1979). c) K.C.Nicolaou, W.J.Sipio, R.L.Magolda, S.Seitz and W.E.Barnette, J.C.S.Chem.Comm., 1067(1978).
- 11) G.L.Bundy, and J.M.Baldwin, Tetrahedron Letters., 1371(1978).
- 12) K.C.Nicolaou, W.E.Barnette, R.L.Magolda, J.Am.Chem.Soc., <u>101</u>, 766 (1979).
- 13) $\underline{5}$: m.p. $58\sim60^{\circ}$ C, IR(\vee cm⁻¹) 3600 3100,2920,2850,1740,1665,1603,1435,1360,1240,1010,960, 910, 1 H-NMR(CDCl $_{3}$ $^{\circ}$ ppm) 0.90(t,3H),1.2 \sim 1.6(m,10H),2.2 \sim 2.6(m,8H),3.65(s,3H),3.75(m,1H), 4.00(m,1H),4.87(d,1H),4.89(m,1H),5.50(m,2H),5.91(s,2H), MS(m/e) 364(M⁺),305,263.
- 14) $\underline{2}$: IR(v cm⁻¹) 3600~2500,2920,2850,1700,960, 1 H~NMR(CDC1 $_{3}$, δ ppm) 0.9(t,3H), 1.2~1.6(m,10H), 2.2~2.6(m,6H),3.75(m,1H),3.90(m,1H),4.85(d,1H),4.86(m,1H),5.2(b,3H),5.50(m,2H),5.90(s,2H).
- 15) Tests on platelet aggregation were carried out by Mr.S.Nishio in our laboratories.